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Regular patterns in dichotomically driven activator-inhibitor dynamics
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We investigate Turing pattern formation in the presence of additive dichotomous fluctuations in the context
of an extended system with diffusive coupling and FitzHugh-Nagumo kinetics. The fluctuations vary in space
and/or time. Depending on the realization of the dichotomous switching the system is, at a given time �for
spatial disorder at a given position� in one of two possible excitable dynamical regimes. Each of the two
excitable dynamics for itself does not support pattern formation. With proper dichotomous fluctuations, how-
ever, the homogeneous steady state is destabilized via a Turing instability. We investigate the influence of
different switching rates �different correlation length of the spatial disorder� on pattern formation. We find three
distinct mechanisms: For slow switching existing boundaries become unstable, for high rates the system
exhibits “effective bistability” which allows for a Turing instability. For medium rates the fluctuations create
spatial structures via a new mechanism where the influence of the fluctuations is twofold. First they produce
local inhomogeneities, which then grow �again caused by fluctuations� until the whole space is covered.
Utilizing a nonlinear map approach we show bistability of a period-one and a period-two orbit being associated
with the steady homogeneous and the Turing pattern state, respectively. Finally, for purely static dichotomous
disorder we find destabilization of homogeneous steady states for finite nonzero correlation length of the
disorder resulting again in Turing patterns.
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I. INTRODUCTION

The interaction of noise/disorder and nonlinearity has at-
tracted a lot of interest in recent years �1–3�. In particular the
possibility of pattern formation induced by fluctuations has
been investigated thoroughly �4–11�. There exist various
types of underlying dynamics that support spatial structures.
Excitability and bistability are among the best studied ex-
amples �12�.

A prototypical model system exhibiting both of these dy-
namics is the FitzHugh-Nagumo �FHN� system which we
use in the present study. Originally the FHN system was
developed to describe nerve cell dynamics �13,14� and after-
wards has found applications in many physical, biological,
and chemical contexts �15,16�. Spatially extended systems
with diffusive coupling that locally obey FHN dynamics
have been found to support standing and moving patterns
�16,17�.

Several of the most prominent patterns observed in nature
are due to the Turing instability �1,18,19�. This phenomenon
occurs when inhomogeneous perturbations of certain wave-
length�s� cause destabilization of a homogeneous steady
state.

Fluctuations are omnipresent in nature. Several studies
have shown their nontrivial influence on nonlinear systems.
Counterintuitively, fluctuations may promote structure
formation rather than smear out already existing structures
�20�.

In a series of recent papers �10,21–23� the possibility of
Turing-pattern formation induced by dichotomous fluctua-
tions has been demonstrated. The dichotomous fluctuations
switch between two different dynamics each of which does
not support Turing pattern formation, i.e., it possesses a

pattern-free steady state only. It is the interplay between
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them that triggers the creation of structures. The authors used
dynamical models with either multiplicative dichotomous
noise or switched between two distinct dynamics each hav-
ing its own state dependency.

In the present study we investigate an extended array that
locally possesses FHN dynamics that is subject to additive
dichotomous driving varying either in space or in time or in
both simultaneously. Special emphasis is put on the influence
of different correlation lengths and times, respectively. Apart
from finding Turing structures we also present a mechanism
to generate them. It occurs for intermediate correlation times
and can thus be distinguished from the previous studies
�10,21–23� which operated with small correlation lengths or
times, respectively.

More precisely, we illustrate that additive dichotomous
switching between two excitable regimes of the individual
FHN system may act in the extended system in a way that
initially a single local inhomogeneity �single hump on the
uniform steady state background� is generated. This inhomo-
geneity acts as the core from which the pattern evolves
throughout the whole space. The growth proceeds stepwise,
i.e., with each switching new boundary layers are created
adjacent to the core.

The paper is organized as follows. In Sec. II we introduce
our noise-driven �extended� FHN system and discuss the dy-
namics of an individual system. In Sec. III we investigate the
effect of purely temporal switchings. We show that there
exists qualitatively different behavior for different switching
rates. Three different mechanisms create patterns on three
different time scales. Although generated by different mecha-
nisms the final patterns are very similar. In order to gain
further insight into the pattern formation process we investi-
gate multistability of steady solutions in the extended system.
To this end we invoke a nonlinear map approach to assure

the bistability of homogeneous and Turing pattern states.

©2006 The American Physical Society-1

http://dx.doi.org/10.1103/PhysRevE.73.056209


SAILER et al. PHYSICAL REVIEW E 73, 056209 �2006�
Amplitude equations are derived proving subcriticality of the
Turing bifurcation. Section IV deals with purely spatial fluc-
tuations. We study the impact of different correlation lengths
and find that with their proper choice the parameter range in
which a homogeneous steady state is destabilized can be sig-
nificantly increased. Finally we summarize our results and
briefly discuss the influence of fluctuations varying in both
space and time.

II. THE DICHOTOMOUSLY DRIVEN FITZHUGH-
NAGUMO SYSTEM

We study an extended array with FitzHugh-Nagumo
�FHN� kinetics with additive noise obeying the equations

dxi

dt
= xi − xi

3 − yi + Dx�xi, �1�

dyi

dt
= ��xi − ayi − Ii�t�� + Dy�yi, �2�

where � denotes the discrete Laplace operator which in our
numerical simulations we treated with the help of the Crank-
Nicholson scheme. In what follows we refer to the system
�1� and �2� as the lattice system. � is a small parameter
ensuring a clear timescale separation of the activator x
�fast� and the inhibitor y �slow�. Throughout the paper
we fixed it to �=0.05. Further, we set the value of a to
1.475 as this value is crucial for the phenomena we present.
For the coupling �diffusion� constants we use Dx=0.02 and
Dy =5.0 unless mentioned otherwise. Ii�t� constitutes a ran-
dom telegraph process which takes one of the two values d
and −d. We call the rate of the switching between the two
states �. The correlation function �t2� t1� of the process is
given by

FIG. 1. Nullclines of a single FHN system with solid line: cub
obtained by setting ẏ=0. Here the overdot signifies the temporal de
of the dichotomic driving I�t�. FPi labels the different fixed points.
d=−0.2 �lower plot� where a superthreshold perturbation has been
symmetry around x=0.
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�Ii�t1�Ij�t2�� = d2e−2��K�i, j� , �3�

where K�i , j� is the spatial correlation function between the
different sites in the array and �= �t1− t2�.

Before embarking upon a study of the spatio-temporal
behavior of the coupled lattice system we consider the
dynamics a single decoupled FHN system resulting in the
limit Dx=Dy =0. Setting additionally I�t� to a fixed value
d the system becomes deterministic. For large enough
�d���d��dc=2a� 1

27
�1− 1

a
�	0.104� the resulting FHN system

exhibits excitability. There exists a �single� stable fixed point
such that small perturbations in its vicinity decay. On the
other hand, perturbations exceeding a certain threshold lead
to a large excursion of a unit in phase space before the fixed
point is approached again. For �d��dc the system exhibits
bistability, i.e., it possesses two stable and one unstable fixed
point.

Due to the symmetry of Eqs. �1� and �2� under the trans-
formations x→−x and y→−y the single system is in another
excitable regime with equivalent dynamics for I�t�=−d. Thus
the switching between the two states of the random telegraph
process I�t� entails transitions between two excitable dy-
namical regimes of the FHN system �1� and �2� associated
with either the fixed point located on the left or on the right
branch of the cubic nullcline, respectively. A corresponding
graphical interpretation is presented in Fig. 1.

III. GLOBAL ALTERATIONS

In assuming spatially uniform driving, i.e., K�i , j�=1,
global dichotomic switching is applied to the system
�Ii�t�= I�t��. We denote by ẋ±d= � ẋ

ẏ±d
� the dynamics of the lat-

tice system �1� and �2� with ẏ given by the second equation
�2� with I�t�= ±d. The corresponding fixed points are called
x0,+d and x0,−d. ẋdet stands for the deterministic dynamics
arising without driving, i.e., for I�t�=0. To gain insight into

llcline obtained by setting ẋ=0, dashed lines: the linear nullcline
ive. The linear nullcline is shown for the two different realizations
ight hand side shows the dynamics of x for d=0.2 �upper plot� and
d and a spike provoked. The dynamics are equivalent but have a
ic nu
rivat
The r
adde
the impact of the dichotomous switching process on the dy-
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namics we initialize the system in the dynamical regime ẋ+d
with the initial values of the units �xn�0� ,yn�0�� at one of the
fixed points, here taken to be x0,+d. In real space this corre-
sponds to a homogeneous steady state. In our numerical
simulations we add tiny but crucial Gaussian white noise of
intensity 10−6 �for comparison: d is of order 10−1� to the
system in order to provide an almost homogeneous distribu-
tion of the units around the resting position ( hereafter we
refer to this set of points with coordinates �x�t� ,y�t�� as the
cloud). Despite its extension in phase space the coupled units
in the cloud still represent a virtually homogeneous steady

FIG. 2. Development of stationary patterns for medium switching
by a cloud� is initially distributed around a fixed point. Once switchi
If a second switching occurs just as the cloud is passing from the le
then does not return to the fixed point of the deterministic system b
�cf. Fig. 3, t=58�.
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pattern in real space. First we study the dynamic of a one-
dimensional �1D� system.

A. Low switching rates

For a very low switching rate � �so that there is enough
time left in between two consecutive switchings that units
can travel from one branch of the cubic nullcline to the
other� the whole cloud stays at the fixed point x0,d for a
very long time keeping the lattice state close to the homoge-
neous steady state. Once a switching d→−d occurs the

s in phase space. The system with small inhomogeneities �indicated
ccurs �left panel� the cloud starts to move to the second fixed point.
the right �middle panel� it can be split into two. The second cloud
oves to the other side where it stays. A spatial structure is formed

FIG. 3. �Color online� Devel-
opment of stationary patterns for
medium switching rates in real
space. After the first nuclei are
formed every movement of the
homogeneous part of the cloud
from one fixed point to the other
adds a new layer at either side of
the nucleus. After a long time a
very regular structure is formed.
The time is given above each pic-
ture. The y variable �not shown�
oscillates with equal period but
small amplitude �24�. No-flux
boundary conditions are used. The
lattice constant is 0.05.
rate
ng o
ft to
ut m
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cloud leaves this fixed point for x0,−d approaching the
latter where then all the members of the cloud remain
captured in the vicinity of this fixed point until the next
switching −d→d occurs and the transition process starts all
over again.

B. Intermediate switching rates

For higher switching rates � we find a different behavior:
After some time of passage of the complete cloud back and
forth between x0,+d and x0,−d stationary structures are formed.
This behavior is illustrated in Figs. 2 and 3.

The emerging patterns are the product of a switching
of the telegraph signal taking place just at the moment
when the cloud has begun to cross the excitation threshold.
Some individual units of the cloud are already beyond
the threshold and, therefore, get excited executing a swift
transition to the left outer branch of the cubic nullcline.
The remaining units that lag behind, return to the nearby
fixed point on the right branch. Those latter units arriving at
the left outer branch of the cubic nullcline get trapped there
due to the strong inhibitory coupling �vertical direction� that
prevents their passage downwards the left cubic nullcline
with subsequent return to the right part of the cubic nullcline.
This trapping feature, being crucial for the pattern formation,
has to be distinguished from the behavior without diffusive
coupling, i.e., when Dx=Dy =0. Once an excitable individual
unit has made the direct transition from the right outer
branch of the cubic nullcline to its left counterpart it runs
along the latter until it reaches the minimum of the nullcline.
Afterwards the unit departs from the nullcline and performs a
straight motion towards its opposite outer branch where
eventually the motion terminates at the fixed point. In the
corresponding time series of the signal a single spike occurs
�see Fig. 1�.

In contrast to the uncoupled case, with proper inhibitory
coupling �a small ratio Dx /Dy is mandatory� the units
that become trapped on the left outer branch of the cubic
nullcline arrange their positions such that in real space
a large-amplitude spatial inhomogeneity �a hump� is attained.
This hump resembles the shape of a localized stationary
pattern �also referred to as a “contrast structure” being
characteristic for excitable media �17,24–27�. The position
on the lattice at which the first hump appears is arbitrary for
it depends on that part of the randomly distributed
units in the cloud which is beyond the excitation threshold
at the switching moment. As was demonstrated in Ref.
�25� this stationary pattern is stable with respect to
small perturbations. In the appendix we outline a method to
obtain stationary localized solutions for the lattice
system.

We call such a large spatial inhomogeneity a “nucleus.”
We stress that a nucleus is extremely robust, that is neither
its shape nor its position in real space is affected by
further switchings. The homogeneous regions being suffi-
ciently far from the nucleus feel little of it. At each further
switching of the homogeneous regions, adjacent to the so
far created local spatial inhomogeneities new local

humps are built up as is illustrated in Fig. 3. In other
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words with each switching the inhomogeneous region
grows on the expense of the homogeneous region. The
formation process goes on adding hump by hump until a
periodic pattern covers the whole lattice. Notice the
slight deviations in the width of the individual spatial
inhomogeneities at early stages of the formation process.
Eventually, the diffusive interaction between the neighboring
sites leads to the formation of a perfectly periodic pattern.
However, it takes diffusion a much longer time to render the
pattern regular than it took the pattern to be generated �right
lower panel in Fig. 3�.

Here we would like to mention that the pattern growth
mechanism under random switching �once the first hump has
been created� proceeds similar to the one in oscillating media
�28�. In fact, in our system the growth behavior observed for
periodic switching �not shown� resembles the one observed
for random switching.

Here we want to mention that this kind of growth of
the inhomogeneous pattern at the boundary layer is due
to our choice of parameters. We have performed simulations
with different parameter sets and found that it is also possible
to add not only one half of a hump at each switching but
also three, five, and more halves. �The parameter range
for adding simultaneously several layers is very small.�
This can, for example, be achieved by a change of the
intensity d of the fluctuations. By varying the same param-
eter it is also possible to substract half a hump with
each switching �see Fig. 4�. Moreover, a change in the

FIG. 4. �Color online� Depending on the parameter values the
number of humps can also be decreased �Dx=0.9�. Other param-
eters as throughout the paper. Shown are snapshots shortly after

each switching.
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diffusion constants can double the number of humps in the
system �Fig. 5�. This multiplier works only for small �
because immediately after the multiplication the distance
between two consecutive humps is very small. No new
humps fit in between. The time until diffusion has restored
the stable distance between them is large. During this
time the multiplier does not work. Notice that in contrast
to the case treated in Fig. 3 the pattern is not symmetric
with respect to x→−x. Let us call the width of a hump �we
consider the thin parts as humps; in an infinitely extended
regular pattern this choice is arbitrary� lh and the distance
between two neighboring humps �h. �h must roughly in-
crease to three times lh before a new multiplication can be
performed.

The emergence of localized pattern from the homoge-
neous background can be understood by means of the fea-
tures of the corresponding stationary system

0 = xi − xi
3 − yi + Dx

xi−1 − 2xi + xi+1

�r2 ,

0 = ��xi − ayi + d� + Dy
yi−1 − 2yi + yi+1

�r2 . �4�

For the following investigations we set the lattice spacing �r
equal to 1.

FIG. 5. �Color online� Depending on the parameter values the
number of humps can also be multiplied �d=0.5�. Other parameters
as throughout the paper. In this case the time between two consecu-
tive switchings must be large enough to restore the stable distance
between two neighboring humps. Switchings occur only between
line one and two and between line three and four.
056209
By defining

xn = sn, xn−1 = tn, yn = un, yn−1 = vn �5�

the set of equations can be cast into a four-dimensional map
form

sn+1 =
1

Dx
�− sn + sn

3 + un� + 2sn − tn,

tn+1 = sn,

un+1 =
�

Dy
�sn − aun + d� + 2un − un,

vn+1 = un. �6�

Looking closely at the resulting Turing pattern �lower
right panel in Fig. 3� we see that there exist small transition
areas between large regions of almost constant amplitude.
For an analytic approach we approximate the pattern as
bivalued. We will show in the following paragraphs that the
map �6� indeed yields bistability of a period-one �P1� solu-
tion �homogeneous pattern� and a period-two solution �Tur-
ing pattern�.

We are seeking for periodic solutions of Eqs. �6�.
The period-one solution is quickly found: We set sn=sn+1,
tn= tn+1, un=un+1, and vn=vn+1 �this means on the lattice:
xn=xn+1, and yn=yn+1� and notice that the solutions of the
map are equivalent to the stationary solutions of the zero-
dimensional FHN model �1� and �2�. With our parameters
that means that there exists one real valued solution �the
value can be found in Eq. �8��.

The procedure is more cumbersome in the period-two
�P2� case: We now set sn=sn+2, tn= tn+2, un=un+2, and
vn=vn+2 �this means on the lattice: xn=xn+2, and yn=yn+2�.
We arrive at the following equations:

0 = − sn
3 +

sn − sn
3 − un

2Dx
+ 
sn −

sn − sn
3 − un

2Dx
�3

−
�sn − aun + d��

2Dy
,

0 = aun − 2sn − 3d +
sn − sn

3 − un

2Dx
+ a
un −

��sn − aun�
2Dy

� .

�7�

The real valued solutions of which we can find numerically:

P1: sn = − 0.715, un = − 0.349, sn+1 = − 0.715,

un+1=−0.349,

P2: sn = − 1.009, un = 0.094, sn+1 = 0.896,

un+1=0.099,

P2 sn = − 0.842, un = − 0.218, sn+1 = − 0.198,
�8�
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un+1=−0.216.Additional solutions exist with reversed sign
as well as with exchanged values of sn and sn+1 and
exchanged values of un and un+1. The first solution
�upper row� is of period 1. It is the same solution as in
the zero-dimensional FHN as discussed above. The
second and the third solution are of period two. This fits
well to the results from the reaction-diffusion simulation
�Fig. 3�.

Next we want to test the stability of the solutions. We
therefore linearize Eqs. �6� around the fixed points. The cor-
responding eigenvalue is given by:

��k� =
1 − 3x0

2 − �a + 2�Dx + Dy��cos�k� − 1�
2

+��1 − 3x0
2 − �a + 2�Dx + Dy��cos�k� − 1��2

4
− � .

�9�

�There are two eigenvalues for each fixed point. For a stabil-
ity analysis we need to study only the eigenvalue with larger
real part.�

The real part of these eigenvalues is plotted versus
the wave number k �by setting �r=1 the wave vector k
also becomes dimensionless� in Fig. 6. We see that the
period-one solution is stable as well as the period-two
solution with alternating sign. The other period-2 solution
is unstable. Interpreting finite series of humps as a segment
of the stable period-2 solution and assuming that such a
segment is also stable we can understand the pattern forma-
tion in terms of the map orbits: Due to the combined action
of the additive noise and the dichotomous switching a
finite region of the lattice is brought close to the basin
of attraction of such a stable segment. With each further
switching the elements at the border of the finite inhomoge-

FIG. 6. Real part of the eigenvalue of the linearized problem
versus wave vector of the perturbation k. The plot is symmetric
to k=	 and 2	 periodic. For better visibility we show only a
limited part of the abscissa. The solid line represent the period
one solution with sn=−0.71526, . . . . We see it is stable. The dashed
lines represents the period-two solution with alternating sign
�sn=−1.00925, . . . �, one line for each fixed point. The dash-dotted
lines represent the period-two solution with nonalternating sign
�−0.84286, . . . �. Parameters a=1.475, �=0.05, d=0.2, Dx=0.02,
Dy =5.0.
056209
neous segment are drawn towards the inhomogeneous
solution.

The proper switching rate at which a local inhomogeneity
is created can be estimated as follows: We assume that an
individual system �Dx=Dy =0� initially sits at the stable fixed
point x0,d and that a switching d→−d occurs at time t=0.
Without further switching and in the limit of perfect time
scale separation ��→0� the unit will climb on the cubic
nullcline from the x0,d to its maximum at x=xmax. �From
there it jumps infinitely fast horizontally to the left outer
branch of the cubic nullcline.� The time T it takes for this
climbing motion is determined by

T = �
x0,−d

xmax

dx
1 − 3x2

��1 − a�x + ax3 − d�
. �10�

For a=1.475 and d=0.2 this amounts to T=0.1107/�. Con-
sequently, when its units are distributed around x=xmax, the

FIG. 7. �Color online� Left: Regions of positive real part �black�
of the eigenvalue of the linearized problem in the inhibitor coupling
strength-wave vector plane. Other parameters the same as through-
out the paper. Right: Region of turing instability for different values
of the timescale separation �. The homogeneous state is unstable
above the lines.

FIG. 8. Time series with different switching rates. The time is
given above each plot. Parameters: �=0 �upper row�, 5.0 �middle
row�, 0.01 �lower row�; �=0.05, a=1.475, Dx=0.02, Dy =5.0,

d=0.2.
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cloud is neither too close to the position of the original fixed
point at x0,d nor is it already in the vicinity of the second one
at x0,−d. That the whole cloud now moves as an entity to the
left can be prevented if the switching time 1/� becomes
comparable to T. Suppose the switching −d→d has taken
place so that the original dynamics ẋ+d with the fixed point at
x0,d is restored. It is essential for the partition of the cloud
that at the instant of switching there is a part of the cloud that
is still below the excitation threshold on the right branch of
the cubic nullcline as is indicated in Fig. 2. �Note that for the
coupled dynamics there is no common excitation threshold
valid for all units because whether a system is excited or not
depends not only on its own state but also on that of its
neighbors.� In fact, then the cloud can break up because
those of its units on the forefront with coordinates already
beyond the excitation threshold continue the rapid journey
onto the left branch of the cubic nullcline while the rest
remains on the right branch and gets drawn back by the
stable fixed point.

Conclusively, we have demonstrated that global alteration
between two different monostable excitable dynamics yields
pattern formation while each of the monostable dynamics
does not. The situation can hence be viewed as some kind of
Parrondo’s Game: switching between two loosing strategies
constitutes a winning strategy �29�.

We underline that the probability per unit time for the
occurrence of pattern formation approaches zero as the mag-
nitude of the inhomogeneities �size of the cloud� imposed by
the tiny additive Gaussian noise on the system diminishes.

Therefore the presence of inhomogeneities is vital for the

regular periodic pattern evolves. The typical wavelength
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dichotomously driven mechanism of pattern formation. In
general, in any real world system small fluctuations are om-
nipresent. In our case they are responsible for the extent of
the cloud. We also want to mention that the growth of an
initial hump occurs also for very low switching rates �. It
takes a much longer time for the phenomenon to occur and
we did not observe it in our simulations.

C. High switching rate

We now focus our interest on the limit of a high switching
rate �, i.e., of fast fluctuations. Following Buceta et al. �30�
we expect such systems to behave as if instead of the signal
its temporal average were applied. This is in the present case
system �1� and �2� with Ii�t�→ �Ii�t��=0. For our choice of
parameters there exist for a single �uncoupled� system two
stable and one unstable fixed points. The stable ones, de-
noted by ±x0,det, are symmetrically placed around the origin
of phase space. Clearly, the system with diffusive coupling
possesses also fixed points at these locations. However, by
choosing proper coupling constants �It is important that the
diffusion constant of the inhibitor y is much larger than that
of the activator x.� the fixed points may loose their stability
via a diffusion induced or Turing instability.

More precisely, the stability of the fixed points ±x0,det
depends on the wavelength of the perturbation enforced on
the system. The largest eigenvalue ��k� of the extended sys-
tem linearized around the stable fixed point x0,det= �x̃ỹ�t is
given by
� =
1

2
�1 − 3x̃2 + D̃x + D̃y − a�� +

1

2
��1 − 3x̃2 + D̃x + D̃y − a��2 − 4�1 − 3x̃2 + D̃x��D̃y − a�� − 4� �11�
with

D̃x,y = 2Dx,y�cos�k� − 1� . �12�

In Fig. 7 we show regions of Turing instability in the
k−Dy plane. Regions of positive real parts of � are depicted
as black regions. As can be seen perturbations of a finite
wavelength larger than zero are favored to grow if the diffu-
sion coefficients are chosen properly. In addition we depict
the region where Turing instabilities occur in the Dx-Dy pa-
rameter plane for two different values of the timescale sepa-
ration �. Apparently, with enhanced time scale separation the
Turing space is enlarged.

In order to demonstrate the diffusion-induced pattern for-
mation the units of the coupled system are initialized at the
fixed point of the deterministic system ẋ0,det and global
dichotomous switching with rate �=2000 is applied. In fact,
we find the behavior known from the Turing instability.
Small fluctuations grow all over the medium and a very
of this pattern coincides with that of the deterministic
nonlinear contrast structure. To verify that the pattern forma-
tion is indeed due to the Turing mechanism we reduced
the inhibitor diffusion coefficient from our standard value
Dy =5.0 to Dy =0.5. In this case the homogeneous pattern
persist. Hence, destabilization of the homogeneous steady
state is due to the influence of the diffusion.

We demonstrate the effect of different switching rates � in
Fig. 8. For low and intermediate rates we have started with
inhomogeneous initial conditions and for high rates with ho-
mogeneous ones. Note that inhomogeneities grow due to the
combined action of global switching and small additive noise
as demonstrated in Fig. 2. In all situations we applied addi-
tive Gaussian noise of intensity 10−6 to each individual ele-
ment. The growth of the patterns is due to three different
mechanisms. For �=0 the instable border grows slowly into
the homogeneous region. In the case of intermediate �
switchings generate additional layers at the boundary. If we
denote with L the period length of the final pattern in Fig. 3

we can estimate the speed of the growth of the pattern’s
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radius as follows. After the time T the process I�t� has on
average switched �T times. With each switching an addi-
tional layer �half a hump� is appended to the inhomogeneity.
The average speed of the propagation of the boundary v̂ is
then given by v̂= 1

2�L. This constitutes an upper limit for the
average speed because switching have no effect on the
growth of the pattern if they occur too early, i.e., before the
homogeneous part is in the vicinity of a fixed point. Simula-
tions with different parameter values showed that it is also
possible to add instead of one half a layer three, five, or more
halves at each side of the inhomogeneity. Also, it is possible
to decrease the size of the inhomogeneity. The average speed
of propagation is therefore more generally given by

ṽ = 
1

2
+ Z��L , �13�

where Z is an integer number that depends on the parameters
of the system �L also depends on the parameters�.

For high � inhomogeneities grow all over the array. The
speed with which the patterns grow is therefore different for
the three cases: the faster the switching the faster the growth.

D. Weakly nonlinear analysis and amplitude equations

Apparently there exist two distinct steady states namely
the homogeneous solution and the periodic �Turing� solution.
We surmise that the dichotomous switching constitutes a
hard excitation causing the transition between the two states.
In order to assure the existence of such a hard excitation we
perform a perturbative analysis to derive the amplitude equa-
tions describing the evolution near a critical bifurcation
point. Note, that we derive the amplitude equations solely for
the purpose of showing that there exists a hard excitation in
our model.

The homogeneous steady state of Eqs. �1� and �2� in the
excitable parameter regime is given by

x̃ =
21/3�a − 1�

�27a2d + �108�1 − a�2a3 + 729a4d2�1/3

+
�27a2d + �108�1 − a�3a3 + 729a4d2�1/3

321/3a

ỹ =
x0 − d

a
, �14�

where d is taken as positive.
For a more convenient treatment we describe the FHN 2

in terms of coordinates relative to the fixed point �x→x+ x̃�:

ẋ = Ax + Bx2 + Cx3 − y + Dx�x ,

ẏ = ��x − ay� + Dy�y �15�

with A=1−3x̃2, B=−3x̃, and C=−1.
We briefly outline the linear stability analysis around

�x̃ , ỹ�. Imposing small perturbation u�t�= �x̃+
x�t� , ỹ+
y�t��
yields the linearized equation ��t−L�u=0 where L is the lin-

earized operator. The solution of the linearized system can be

056209
expanded in normal modes u=v exp��t+ ink� resulting in the
eigenvalue equation ��k�2−tr�L��+det�L�=0 where tr�L�
and det�L� denote the trace and determinant of the linear
operator L, respectively. The condition ��kc�=0 determines
the critical wave number at the onset of the Turing instability

kc = arccos
1 −
1

4
 Ac

Dx
−

a�

Dy
�� . �16�

We restrict ourselves here to the interval 0�k�2	. The
corresponding critical value of A is given by

Ac =��
Dx

Dy
2 − a��

Dx

Dy
� . �17�

A in turn is determined by

A�d� = 1 − 3x̃2�d� , �18�

and d plays the role of the control parameter.
To quantify the distance to the critical value the small

parameter �= �A−Ac� /Ac is introduced. As the next step we
derive the amplitude equations to describe the inhomoge-
neous state beyond linear analysis �31,32�. In our derivation
we maintain the discrete Laplacian operator rather than using
its continuum differential version. The weakly nonlinear
analysis known from the continuum system is then straight-
forwardly modified to be applied to the lattice system �for
details see Ref. �33��. Since just above criticality the eigen-
values of the critical modes are close to zero the assigned
modes vary slowly while the remaining noncritical modes
relax rapidly. The solution of the linearized equation with
wave vector close to kc can then be expanded as

u = �
n

u0Wn exp�ikcn� , �19�

where the summation proceeds over the unstable modes
and u0= �1,Ac+2Dx�cos�kc�−1�� is the eigenvector belong-
ing to the linear operator L. The function W involves
the slow time evolution as well as slowly varying spatial
changes. Utilizing a standard multiple-scale analysis the con-
trol parameter and the solution are expanded in terms of a
small parameter 
1. At each order in 
 solvability condi-
tions have to be fulfilled according to the Fredholm alterna-
tive. Close to the bifurcation point the critical amplitudes
satisfy the amplitude equations in the form of a complex
Ginzburg-Landau equation

F
dWm

dt
= ��Wm+1 − 2Wm + Wm−1� + �Wm + 
�Wm�2Wm,

�20�

with coefficients

F = 1 +
Ac + 2D̃x

2D̃ − �a
,

y
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� = Dx + 2�cos�kc� − 1�� �Ac + 2D̃x�Dy

2D̃y − �a
�1 + 4Dx� − 4�Dx

+ �Ac + 2D̃x�2Dy�
�Ac + 2D̃x�Dy + 2D̃y − �a

�a + �2D̃y − �a��Ac + 2D̃x�2Dy

� ,

� = A − Ac,


 = 2B 2aB

1 − aA
+

��a − 2D5 y�B

� − ��a − 2D5 y��Ac + 2D5 x�
� , �21�

with the abbreviations

D̃x,y = 2�cos�kc� − 1�Dx,y, D5 x,y = 2�cos�2kc� − 1�Dx,y .

�22�

For our standard parameter set the coefficient 
 is positive
and hence, the Turing instability is subcritical confirming the
presence of a hard excitation. Furthermore, we scanned the
parameter space of the diffusion constants and found that 
 is
indeed always positive regardless of the values of Dx and Dy,
thus excluding a supercritical bifurcation. We remark that in
order to gain information on the resulting patterns we would
have to extend the analysis to higher orders of the Ginzburg-
Landau equation. However, this is beyond the aim of this
study.

Summarizing the results obtained so far we have learned
that the dichotomous switching has two effects on the ex-
tended system. First it induces a stable inhomogeneity in the
form of isolated local activated regions, where isolated
humps are built on the homogeneous background. Secondly
it causes a transition between two coexisting stable states
creating new humps with each switching. Our numerical
simulations showed the stability of each of these multi hump
states. Moreover, the eventually resulting perfectly periodic
inhomogeneous steady �Turing pattern� turns out to be the
most stable of all stationary states with respect to global
switching. From an alternative point of view the global di-
chotomous switching entails the inhomogeneous steady state
to grow at the cost of the homogeneous state.

FIG. 9. Turing pattern �right� obtained by applying frozen di-
chotomic disorder �left� to a homogeneous system at the fixed point.
K�i , j�=
i,j; size: 400�400; �r=0.1; d=0.2;
056209
IV. FROZEN NOISE

In this section we investigate the limit of vanishing
switching rates of the random telegraph signal, i.e., in this
way we incorporate static dichotomous disorder in the sys-
tem. The spatial correlation of the random signal is governed
by the lattice spacing used in our simulation. An example for
the realization of static dichotomous disorder in a two-
dimensional lattice system is depicted in Fig. 9. The right
panel of Fig. 9 shows the results of a numerical simulation
with that noise realization. As in the case of fast global
switching we see a Turing pattern emerge. The pattern is not
a mere reflection of the underlying disorder but has a struc-
ture of its own. Its typical wavelength is much larger than
that of the disorder. As initial conditions we chose xi
=0.56748 and yi=0.384732 for all i=1, . . . ,N. This is the
location of the stable fixed point of a single system without
dichotomous driving �Ii=0�. The dynamical process of pat-
tern formation is again driven by a Turing instability. Pertur-
bations of a certain critical wavelength grow until they form
the pattern shown in Fig. 9. The pattern formation takes
place in 2D as well in 1D. Typically, Turing patterns in 2D
come in two different shapes �18�: In labyrinth- and in hex-
agonal shape. With our study we found that the lattice system
of Eqs. �1� and �2� supports only the labyrinth type.

As the influence of different correlation lengths of the
disorder is concerned we have investigated numerically dif-
ferent samples with the same lattice constant but with frozen
dichotomous signals of different typical wavelength. The
implementation in our numerical computations proceeded as
follows: For every run of our simulation we chose a different
integer l. We randomly selected a value for the realization of
I for the first element of the lattice system and applied this
value to l−1 consecutive elements. We then picked a new I
value independently of the first, applied it to the next l units,
and so on. When the boundary of the grid is reached we
apply the same realization of I to the l−1 consecutive lines.
This procedure is repeated until the whole space is filled with
squares of side length l that share a realization of I.

Until now we have dealt with the situation where the typi-
cal wavelength l�r of the disorder is much smaller than that
of the pattern. Now we explore the opposite case: the typical
wavelength is much larger than that of the pattern we have
observed above. An example is given in Fig. 10.

As initial conditions we used ẋ0,det. With coarse disorder
�compared to the lattice spacing as well as to the pattern

FIG. 10. Instability of the boundary. We show successive
snapshots of a 2000�2000 array with �r=0.02 at t=0, t=170, and
t=705. The pattern slowly evolves throughout the whole space.
a=1.475.
wave length� there arise sharp borders separating the ex-
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tended regions associated with the two different values of the
static disorder. Units far from these borders feel little of the
disorder and hence, get, as in a deterministic system, at-
tracted by the fixed point connected with the local realization
of I. The interface between the two regions at a corner is not
stable, though. As the central and right panels in Fig. 10
reveal, fluctuations in the border region grow and expand
into the homogeneous part of the pattern. Analogous phe-
nomena have been reported for bistable media in Ref. �15�.
This behavior goes on until the complete plane displays a
patterned structure. As stated above this effect is not observ-
able in the 1D system.

It is illustrative to examine cases with slightly different
values of the parameter a. While for our standard parameter
a=1.475 a flat border is stable and we need a corner for
inhomogeneities to grow a slight change to a=1.46 destabi-
lizes flat surfaces. This is shown in Fig. 11. Noteworthy this
change of parameters goes along with a qualitative change of
the topology of the system’s phase space: Three limit cycles
are born. Two of them are unstable and are centered around
the stable fixed points. One is stable and envelops all fixed
points and other limit cycles.

Particularly illuminating are simulations with the use of
different correlation lengths in parameter regions where the
homogeneous deterministic system �Ii�t�=0� does not sup-
port Turing pattern formation. We therefore reduce the in-
hibitor coupling coefficient to Dy =0.5. In the deterministic
system the homogeneous solution at the fixed points x0,det is
stable �−x0,det as well�. If we apply a very fine dichotomic
noise realization, i.e., one with a small typical length l�r we
find, as expected, a behavior equivalent to that of the deter-
ministic system: a homogeneous distribution at the fixed
point �upper row in Fig. 12�. If we apply a coarser dichoto-
mic perturbation we observe a behavior differing from that
of the deterministic system: Stationary patterns form �lower
line in Fig. 12�. We can thus increase the parameter range in
which Turing patterns emerge. We want to emphasize that
the ratio between activator and inhibitor diffusion constant

FIG. 11. Instability of a straight boundary. We show successive
snapshots of a 500�3000 array with �r=0.2 at t=250, t=1357,
t=2370, and t=4163. The pattern slowly evolves throughout the
entire space. a=1.46, Dx=0.1, Dy =10.
can be significantly decreased.

056209-
A similar system with static dichotomous disorder has
been studies experimentally in Ref. �34�. Here one of the two
states that the dichotomous disorder produces exhibits Turing
instability while the average value does not. For suitable cor-
relation length of the fluctuations the authors report Turing
pattern formation.

To gain some insight into the role of large correlation
length of the disorder we computed its structure factor S�k�
in 1D. It is given by the Fourier transform of the spatial
correlation function. The latter is computed as follows:

�IiIj� = �
Ii,Ij=+d,−d

IiIjp�Ii,Ij� , �23�

where p�Ii , Ij� is the joint probability that I takes the value ±d
at site i and ±d at site j. There are four different combina-
tions for that but due to symmetry reasons it reduces to only
two different values for p, one for equal realizations, and one
for a realization with opposite signs.

These probabilities can be expressed in terms of condi-
tional probabilities

p�Ii = + d,Ij = + d� = p�i, j � lk�p�Ii = + d,Ij = + d;i, j � lk�

+ p�i, j � lk�p�Ii = + d,Ij = + d;i, j � lk� . �24�

Here p�i , j� lk� is the probability that site i and site j are in
the same interval �with index k; k=1, . . . ,N / l� of length l in
which we fixed the value of I. p�Ii= +d , Ij = +d ; i , j� lk� de-
notes the conditional probability that Ii takes the value +d
and Ij takes the value +d if the corresponding sites are in the
same aforementioned interval. With our algorithm for con-
structing the frozen disorder of box length l the latter prob-
ability is equal to one half �one half for either sign of I�.
p�Ii= +d , Ij = +d ; i , j� lk� is equal to one forth. p�i , j� lk�
can be calculated as follows: The probability that randomly

FIG. 12. Coarse fluctuations support pattern formation, fine ones
do not. In this parameter regime the system with Ii�t�=0 does not
support Turing pattern formation. Dy =0.5, �r=0.02, l=1 �upper
row� and l=20 �lower row�. 2000�2000 points are shown.
chosen elements that are further apart than the length of an
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interval belong to the same interval is zero. If they are closer
than that, the probability that the border between two inter-
vals lies between the two elements, is given by

p�i, j � lk� =
�i − j�

l
, �i − j� � l . �25�

The elements with sites i and j are then not in the same
interval. p�i , j� lk�=1− p�i , j� lk� is the complementary
probability.

With this we are able to compute

�IiIj� = d2
1 −
�i − j�

l
� �26�

and we finally arrive at

S�k� =
2d2

lk2 �1 − cos�kl�� . �27�

We show a plot of the 2D autocorrelation function in Fig. 13
and the averaged 1D power spectrum in Fig. 14.

Note that the power at the critical wave number kc is
much higher in the case of a large correlation length of the
disorder than for small correlation length. This is a possible
reason for the formation of the patterns. The high power at kc
may lead to a larger amplitude of the deviations from the
steady state of wavelength kc and drive the system further
into the nonlinear regime.

FIG. 13. Autocorrelation of the noise C= �IiIj� where the sites i
and j are r apart over the distance r. The left panel corresponds to
the upper noise realization in Fig. 12, the right panel to the lower
one.

FIG. 14. Structure factor S�k� of the underlying noise for the
patterns in Fig. 12. The left panel corresponds to the fine disorder in
Fig. 12 �upper row�, the right to the coarse disorder �lower row�.
056209-
V. CONCLUSIONS

We have investigated the influence of dichotomous fluc-
tuations on pattern formation in a diffusively coupled ex-
tended FHN system. The fluctuations were chosen such that
locally one of two excitable dynamics was realized at a cer-
tain time. We emphasize that in both dynamics there exists
one stable homogeneous steady state. We have shown that
due to appropriate switching between the two dynamical re-
gimes either of the two steady states can be destabilized.

For global switching depending on the corresponding rate
we found tree different mechanism for the creation of Turing
patterns: For very fast �global� switching �compared to the
activation time of the FHN� the parameter regime at which
the destabilization takes place coincides with those values
for which Turing instability occurs in the system with ap-
plied mean value of the fluctuations �I= �I�=0�.

For slow switching Turing patterns can be found likewise.
Here existing inhomogeneities are necessary for their forma-
tion. The boundaries of the inhomogeneities are unstable and
a pattern slowly evolves from them into the homogeneous
part.

In the case of global alterations of intermediate switching
rate � �comparable to the inverse activation time� we found a
new mechanism to create spatial structures: If one switching
occurs at the correct time stable local inhomogeneities are
formed. Further switchings lead to a growth of the inhomo-
geneous regions at the boundary to the homogeneous re-
gions. The pattern is in that sense more stable with respect to
slow global alteration of the dynamics than the homogeneous
state. Investigation of the stationary solutions of the system
with the help of a nonlinear map approach yields bistability
of a period-one and a period-two orbit corresponding in real
space to the homogeneous and the Turning pattern state, re-
spectively. After a stable spatial inhomogeneity is formed
both of these states coexist in the extended system. The re-
gions are coupled via diffusion terms. The effect of further
switching is then to enlarge the region of inhomogeneity on
the expense of the homogeneous region. We remark that a
change of the parameters reverses the process back to the
overall homogeneous state.

Applying frozen dichotomous disorder of finite nonzero
correlation length causes destabilization of homogeneous
steady states leading again to Turing patterns. In the limit of
small correlation length the averaging over the realizations
�I�r�= �� �I�=0� works very accurately, too.

For larger correlation length homogeneous regions can be
destabilized for parameters that for I=0 as performed in Ref.
�30� do not allow for a Turing instability. In particular in our
case no strong deviation between the diffusion constants of
the activator and inhibitor is needed.

The case of large correlation length is equivalent to the
limit of slow global switching in systems with existing inho-
mogeneities: Boundaries between regions of distinct realiza-
tions of I become unstable and a pattern evades into the
homogeneous part.

We also performed investigations with fluctuations vary-
ing in both space and time. Since the labyrinth pattern is
stable against any realization of the disorder �at least for our
11
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noise strength� such a pattern persists once established.
If the spatial disorder initiates pattern creation and the

inverse switching frequency is higher than the evolution time
a pattern will typically be created before the next switching
occurs. The next realization of the disorder will have hardly
any impact on the once established pattern. There will there-
fore be no systematic influence of the temporal fluctuations.

On the other hand if we look at large spatial correlations
and fast switching times we note that the time it takes for the
pattern to evolve from the boundaries of a pattern with very
coarse spatial disorder �see Fig. 10� into the homogeneous
regions is also much larger than the typical evolution time of
a labyrinth pattern caused by fast switching. This phenom-
enon will therefore have only little effect on the resulting
pattern.

In the case of very fast switching and very small typical
wavelength of the disorder the dynamics of the system aver-
age out the fluctuations just as it is the case with high spatial
or temporal switching rates, only. It is only in the case of
intermediate spatial and temporal switching rates that both
effects have an influence on the system. We find that the
spatial and temporal disorder usually provides the right con-
ditions for inhomogeneities to grow at an earlier time and at
more sites in the system and thereby speeds up the pattern
formation.

Adding a spatial or temporal component to the fluctua-
tions assists the system to average them out. Therefore the
effect of enhancing Turing pattern formation by a certain
typical wavelength �see Fig. 12� is disabled by high switch-
ing rates.
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APPENDIX: A STANDING LOCALIZED PATTERN
SOLUTION—NONLINEAR MAP APPROACH

We demonstrate how a standing localized single hump
is represented by the solution of the stationary system. To
this end we utilize a nonlinear map approach �35,36�. Insert-
ing into Eqs. �1� and �2� ẋn= ẏn=0 results in the difference
system

xi − xi
3 − yi + Dx

xi+1 − 2xi + xi−1

��r�2 = 0, �A1�

xi − ayi + D̂y
yi+1 − 2yi + yi−1

��r�2 = 0, �A2�

with D̂y =Dy /�. In addition we have introduced the lattice
spacing �r. Bearing in mind that Dx /Dy 1 the problem can
be divided into two separate problems �the inner and outer
problem, respectively� each having solution varying on its
056209-
own spatial scale. After having constructed the partial solu-
tions they must be connected with suitable matching and
boundary conditions, respectively. The procedure is equiva-
lent to the study in the corresponding continuum models
�see, e.g., Ref. �37��. First there is the region on the lattice in
which xn alters so rapidly on the short scale of order �Dx that
the diffusion term Dx�xi+1−2xi+xi−1� / ��r�2 can balance the
other terms in Eq. �A1� even with a small value of Dx.
Stretching of the length scale according to �r�=�r /�Dx the
rescaled system reads

xi − xi
3 − yi +

xi+1 − 2xi + xi−1

��r��2 = 0,

xi − ayi +
D̂y

Dx

yi+1 − 2yi + yi−1

��r��2 = 0. �A3�

Since D̂y /Dx�1 the leading order system reduces to

xi − xi
3 − yi +

xi+1 − 2xi + xi−1

��r��2 = 0,

with constant yi. Taking into account the symmetry proper-
ties of the solution the last equation can be satisfied with
yn=0 so that the first equation reduces to xi−xi

3−yi+ �xi+1

−2xi+xi−1� / ��r��2=0. With the notation xn=un and xn−1=vn

the difference equation can be cast into mapping form

un+1 = un
3 − un − vn, vn+1 = un.

On the u−v plane the map possesses a heteroclinic connec-
tion related to a pair of hyperbolic fixed points at �±1, ±1�.
The origin constitutes an elliptic fixed point �35,36�. On the
lattice the heteroclinic connection establishes a kinklike pro-
file corresponding to the steep border of the hump.

Outside the boundary layer xn varies on the same scale as
yn and the term Dx�xi+1−2xi+xi−1� / ��r�2 in Eq. �A1� can be
discarded. The leading order system is then given by

0 = xi − xi
3 − yi, �A4�

0 = xi − ayi + D̂y
yi+1 − 2yi + yi−1

��r�2 . �A5�

The cubic equation �A4� can be readily solved for x=x�y� by
approximating linearly on the left and right branches of the
cubic nullclines around y=0. This yields x±= ±1−y /2 which
upon inserting into Eq. �A3� results in the linear difference

equations �±1− �1/2+a�yi�+ D̂y�yi+1−2yi+yi−1� / ��r�2=0.
The general solution of this equation reads

yn = C1
± exp��n� + C2

± exp�− �n� , �A6�

with exponent �=cosh−1�1+ �a+1/2��Dy�. The coefficients
C1,2

± are determined from the boundary conditions as well as

the matching conditions.
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